SolveSpec
- class cubie.batchsolving.solveresult.SolveSpec(dt: float | None, dt_min: float, dt_max: float, save_every: float | None, summarise_every: float | None, sample_summaries_every: float | None, atol: float | None, rtol: float | None, duration: float, warmup: float, t0: float, algorithm: str, saved_states: List[str] | None, saved_observables: List[str] | None, summarised_states: List[str] | None, summarised_observables: List[str] | None, output_types: List[str] | None, precision: type[float16] | type[float32] | type[float64] | dtype[float16] | dtype[float32] | dtype[float64])[source]
Bases:
objectDescribe the configuration of a solver run.
- dt_min
Minimum time step size.
- Type:
- dt_max
Maximum time step size.
- Type:
- save_every
Interval at which state values are stored.
- Type:
float | None
- summarise_every
Interval for computing summary outputs.
- Type:
float | None
- sample_summaries_every
Interval for sampling summary metric updates.
- Type:
float | None
- atol
Absolute error tolerance when configured.
- Type:
float | None
- rtol
Relative error tolerance when configured.
- Type:
float | None
- duration
Total integration time.
- Type:
- warmup
Initial warm-up period prior to recording outputs.
- Type:
- t0
Initial integration time supplied to the solver.
- Type:
- algorithm
Name of the integration algorithm.
- Type:
- saved_states
Labels of states saved verbatim or
Nonewhen disabled.- Type:
List[str] | None
- saved_observables
Labels of observables saved verbatim or
Nonewhen disabled.- Type:
List[str] | None
- summarised_states
Labels of states with summaries computed or
Nonewhen disabled.- Type:
List[str] | None
- summarised_observables
Labels of observables with summaries computed or
Nonewhen disabled.- Type:
List[str] | None
- output_types
Types of output arrays generated during the run or
None.- Type:
List[str] | None
- precision
Floating-point precision factory used for host conversions.
- Type:
type[numpy.float16] | type[numpy.float32] | type[numpy.float64] | numpy.dtype[numpy.float16] | numpy.dtype[numpy.float32] | numpy.dtype[numpy.float64]
- algorithm: str
- dt_max: float
- dt_min: float
- duration: float
- precision: type[float16] | type[float32] | type[float64] | dtype[float16] | dtype[float32] | dtype[float64]
- t0: float
- warmup: float