ERK tableau registry
ERK_TABLEAU_REGISTRY maps human-friendly identifiers to
ERKTableau instances. The
registry powers get_algorithm_step() aliases and allows callers to select
well-known explicit Runge–Kutta schemes without manually specifying the
coefficients.
- cubie.integrators.algorithms.ERK_TABLEAU_REGISTRY Dict[str, ERKTableau]
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s
(key, value) pairs
- dict(iterable) -> new dictionary initialized as if via:
d = {} for k, v in iterable:
d[k] = v
- dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)
The default ERKStep configuration uses
cubie.integrators.algorithms.generic_erk.DEFAULT_ERK_TABLEAU, the
Dormand–Prince 5(4) pair. The "dopri54" alias mirrors the longer
"dormand-prince-54" key so existing controller presets continue to work.
Available aliases
Key |
Description |
Reference |
|---|---|---|
|
Heun’s improved Euler method (order 2). |
|
|
Ralston’s third-order method with minimized error constants. |
|
|
Bogacki–Shampine embedded 3(2) pair with FSAL property. |
|
|
Dormand–Prince embedded 5(4) pair with FSAL property. |
|
|
Classical fourth-order Runge–Kutta scheme. |
|
|
Cash–Karp embedded 5(4) pair with adaptive control weights. |
|
|
Runge–Kutta–Fehlberg embedded 5(4) pair. |
Tableau container
References
K. Heun. Neue Methoden zur approximativen Integration der Differentialgleichungen einer unabhängigen Veränderlichen. Z. Math. Phys. 45, 1900.
A. Ralston. “Runge-Kutta methods with minimum error bounds.” Math. Comp. 16 (1962).
P. Bogacki and L. F. Shampine. “An efficient Runge-Kutta (4,5) pair.” J. Comput. Appl. Math. 46(1), 1993.
J. R. Dormand and P. J. Prince. “A family of embedded Runge-Kutta formulae.” J. Comput. Appl. Math. 6(1), 1980.
W. Kutta. “Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.” Zeitschr. Math. Phys. 46, 1901.
J. R. Cash and A. H. Karp. “A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides.” ACM Trans. Math. Softw. 16(3), 1990.
E. Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. NASA Technical Report 315, 1969.